Oligo Modifications
Support and Educational Content

Oligonucleotide modifications: Choosing the right mod for your needs

IDT offers hundreds of useful modifications for oligonucleotides. Choosing the right one can be confusing. Begin by choosing a modification category based on the required function:

  • Are you using the oligonucleotide as a substrate for DNA ligase? → Phosphorylations
  • Are you attaching the oligonucleotide to another molecule or surface? → Attachment Chemistry/Linkers
  • Will you be using the oligonucleotide as a detection probe? → Fluorophores and Dark Quenchers
  • Are you looking for a 3’ blocking group? Is steric hindrance a concern? → Spacers
  • Do you want to change the hybridization characteristics? → Modified Bases
  • Is nuclease degradation a concern? → Phosphorothioate Bonds


Figure 1. Find the modification category you need on the IDT website.


When generating synthetic oligonucleotides, including a terminal 3’ or 5’ phosphate requires alternate manufacturing steps to maintain or add the modification. Therefore, all IDT oligonucleotides are shipped without a terminal phosphate group unless requested. 5’ phosphorylation is needed if an oligonucleotide will be used as a substrate for DNA ligase. 3’ phosphorylation will inhibit degradation by some 3’-exonucleases and can be used to block extension by DNA polymerases.

Attachment chemistry/linkers

All of these modifications can be used to link an oligonucleotide with another molecule or a surface. Subcategories of this broad group of modifications are listed:

  • Biotins—Biotin is one of the most popular attachment chemistry options. For most applications standard 5’ Biotin fulfills all needs. Standard biotin does not require additional purification and may be ordered at all scales. 5’ Dual Biotin inserts two adjacent biotin moieties in a sequence. This can slightly increase affinity to streptavidin. Biotin dT allows placement of a biotin internally without disrupting nucleotide spacing. Biotin-TEG helps reduce steric hindrance in applications that require the use of magnetic beads.
  • Amino-Modifiers—Primary amines are reactive with a number of useful molecules such as isothiocyanates, NHS esters, or activated carboxylates. The amino-modifier 5’ Amino Modifier C6 with a spacer arm of 6–7 atoms is the simplest choice. 5’ Amino Modifier C12 increases the distance between the functional amine and the DNA sequence. Amino Modifier dT inserts the functionality internally from an added dT base while the Uni-Link™ Amino Modifier does so without an additional nucleotide.
  • Azide (NHS Ester)—IDT Azide modification uses an NHS ester functional group to attach an azide moiety at the 5’, 3’, or any internal position in an oligonucleotide. This azide moiety may subsequently be used to attach alkyne modified groups using the click reaction.
  • Cholesteryl-TEG—Cholesterol can be conjugated to oligonucleotides and can facilitate uptake into cells. It has been used as a transfection aid for antisense oligos and siRNAs, both in vitro and in vivo.
  • Alkynes—Alkyne modifiers are used to react with azide-labeled functional groups to form stable bonds through the click reaction. 5’ Hexynyl is the simplest and most popular way to introduce a 5’ terminal alkyne group. 5-Octadinynyl dU is a modified base with an 8-carbon linker terminating in an alkyne group and is the preferred way to insert alkynes at internal positions within a sequence. This modification is also available for 3’ or 5’ attachment.
  • Thiol Modifiers—A thiol group can be used to attach an oligonucleotide to a variety of fluorescent and nonfluorescent moieties or surfaces. Oligos containing thiol modifiers are shipped in their oxidized (disulfide) form and require chemical reduction by dithiothreitol (DTT) or Tris (2-carboxyethyl) phosphine (TCEP) prior to use. Dithiol can be inserted into an oligonucleotide at the 5’ position, the 3’ position or internally. Each insertion results in two SH groups available for coupling with ligands or surfaces (linkage to gold surfaces is one popular application). The dithiol phosphoramidite (DTPA) modification can be inserted in series so that 2, or even 3, groups can be positioned adjacent to each other to increase efficiency of ligand/surface interactions.


Fluorophores can be sorted on the website by freedom of use, parent chemical structure, or excitation/emission wavelengths. For example, 5’ FAM is free of licensing restrictions, is derived from fluorescein, and has a peak emission wavelength at 520 nm.

Dark quenchers

These are molecules that are capable of absorbing light energy and releasing it as heat. Quenchers should be paired with a fluorophore that emits light in the optimum absorbance range of the quencher. Iowa Black® RQ (absorbance range: 500–700 nm) is best suited for dyes that emit at longer wavelengths such as Cy5, while Iowa Black® FQ (absorbance range: 420–620 nm) is better for shorter wavelength dyes such as FAM, TET, or HEX.


Spacers can be used to create distance between a functional moiety and the hybridizing region of an oligonucleotide. Spacers are also often used when there is a concern about steric hindrance between the oligonucleotide and the desired functional group interaction or as a blocking group when oligonucleotide extension is not desired (for example, in a synthetic template). Many spacers are units of ethylene glycol, referred to as polyethylene glycol (PEG) spacers. Spacer 18 has six successive PEG units. Spacer C3 comprises 3 successive ethyl groups (not ethylene glycol). dSpacer is an abasic site that is useful for maintaining nucleotide spacing.

Modified bases

This is a very broad category in which different base modifications are introduced to serve a specific purpose. Some uses include cross-linking, duplex stabilization, and nuclease resistance. To select a modification for your application:
  • Choose a category based on function.
  • Start with the simplest version within the category.

IDT Customer Care is always available to guide you through the selection process. Also, contact IDT Customer Care for inquiries about modified bases that may not be listed.

Phosphorothioate bonds

The phosphorothioate (PS) bond substitutes a sulfur atom for a non-bridging oxygen in the phosphate backbone of an oligo. This modification renders the internucleotide linkage resistant to nuclease degradation. Phosphorothioates can be introduced at either the 5’- or 3’-end of the oligonucleotide to inhibit exonuclease degradation. In antisense oligonucleotides, phosphorothioates are also introduced internally to limit nucleic acid digestion by endonucleases.

Click chemistry

Click chemistry is a novel class of attachment chemistry that joins small chemical subunits in a modular fashion. For a detailed description, see the article, Click chemistry-generated internal dye-labeled oligonucleotides.

Product focus—Oligos, modifications, dsDNA fragments

Custom oligonucleotides and primers

You can order up to 1 µmol desalted, custom synthesized DNA oligonucleotides and they will be shipped to you the next business day (larger scales are shipped within 5 business days, pending final quality control). You can also specify whether to receive them dried down or hydrated, and whether you want them already annealed. Every IDT oligonucleotide you order is deprotected and desalted to remove small molecule impurities. Your oligos are quantified twice by UV spectrophotometry to provide an accurate measure of yield. Standard oligos are also assessed by mass spectrometry for quality you can count on.

Learn more or order now.

Oligo modifications

Review a list of the common modifications IDT can add to oligonucleotides here. Not finding a modification you need on the IDT website? IDT will consider any modification you need. Just send your request to noncat@idtdna.com

Custom dsDNA fragments

Rather than annealing oligonucleotides to obtain dsDNA fragments, when your fragment size is 125 bp or longer, it might make more sense to order gBlocks® Gene Fragments. gBlocks Gene Fragments are double-stranded, sequence-verified, DNA genomic blocks, 125–3000 bp in length, that can be shipped in 2–5 working days for affordable and easy gene construction or modification. These dsDNA fragments have been used in a wide range of applications including CRISPR-mediated genome editing, antibody research, codon optimization, mutagenesis, and aptamer expression. They can also be used for generating qPCR standards.

Learn more about gBlocks Gene Fragments at www.idtdna.com/gblocks.

Additional reading

DNA oligonucleotide resuspension and storage—You just received your newly synthesized oligonucleotides. Now what? Here are some guidelines and recommendations on how to resuspend and store your oligos.

Modifications that block nuclease degradation—Are you working with your oligos in cells culture or in vivo? Find out which modifications can be added to an oligo to limit nuclease degradation.

Better PCR probes: A second quencher lowers background, increasing signal detection—Add the ZENTM Quencher as a second, internal quencher in qPCR 5’-nuclease assay probes to obtain greater overall dye quenching, lowering background, and increasing signal detection. When incorporated into oligonucleotides, it also serves to strengthen duplex formation and block exonuclease digestion, while remaining nontoxic to cells. Thus the ZEN Quencher can be useful in steric blocking antisense oligonucleotide applications.

Need a non-standard modification?—Need a modification you don’t find on our website? IDT offers 89 modifications that are not listed in our online catalog. A few of the more popular ones are described along with information on how to order them. IDT will consider any modification you have in mind. Just make a request at .

Review other DECODED newsletter articles on oligo modifications that can facilitate your research.

Authors: Jessica Alexander is Vice President of Specialty Manufacturing Services at IDT. Michael Kammerer is the Manager of Platinum HPLC.

© 2012, 2016 Integrated DNA Technologies. All rights reserved. Trademarks contained herein are the property of Integrated DNA Technologies, Inc. or their respective owners. MGB Eclipse is a registered trademark of Elitech Group. For specific trademark and licensing information, see www.idtdna.com/trademarks.

IDT web tools for oligo properties

Free, online tools for oligo design, secondary structure, dilution, and resuspension.

Try them now ≫

Related Articles

DNA Oligonucleotide Resuspension and Storage

Guidelines and recommendations for how to resuspend and store newly synthesized oligonucleotides.

Read more ≫

Calculation Tips for Resuspending and Diluting Nucleic Acids

Easy guidelines for making a 100 µM solution; calculating nmoles, µg, copy number, and concentration; and determining concentration equivalencies.

Read more ≫

Understanding Melting Temperature

Advice on considerations for better oligo design: oligo concentration, salt, and SNPs.

Read more ≫

Oligonucleotide Modifications: Choosing the Right Mod for Your Needs

Guidelines on selecting specific oligonucleotide modifications and how they can help you in your research.

Read more ≫

Which Biotin Modification to Use?

Applications of each of the different biotins available from IDT.

Read more ≫