Oligo Modifications
Support and Educational Content

Which type of oligo purification should I choose?

Your choice of oligonucleotide purification should be based on several factors, including:

  • the application in which you will be using the oligo
  • the length of the oligo
  • whether the oligo contains any modifications
  • how much yield is needed

Oligonucleotides are synthesized by adding one base at a time using chemical reactions that are approximately 99% efficient. So with each base addition, about 1% of the growing oligonucleotide chains will not undergo base extension. Following base coupling, a capping step is performed to prevent any truncated molecules from participating in further base addition. Because the capping reaction is also slightly less than 100% efficient, a very small percentage of the truncated mutants will remain uncapped and can react during subsequent coupling steps. This leads to the formation of deletion mutants; the deletion can occur anywhere within the sequence and isn’t limited to just nucleotides. Modifications placed internally or at the 3’ or 5’ end of the sequence can also be lost. The resulting oligonucleotide preparation, while comprised primarily of the ordered sequence, is a mixture of the full length oligos, truncated sequences, and sequences with internal deletions.

Part of your decision to request purification should be based on how sensitive your particular application is to the presence of truncated products, those with internal deletions, species missing modification(s), and free dye, if the oligo was dye labeled.

PCR or sequencing: Standard desalting provided with every oligo order is sufficient for most of these applications, as truncations and deletions will not affect your results appreciably. Deletion products are very rare compared to full length oligo, with truncations occurring on the 5’ end of the growing strand. The 3’ end will always remain intact, which is the most important consideration for PCR-based applications.

Cloning, mutagenesis, and gel shift: For these applications, full length product is of utmost importance, and PAGE purification should be strongly considered. PAGE purification will result in the highest purity level of full length product—routinely achieving greater than 85% full length product.

Note that PAGE purification can sometimes result in lower yields than HPLC purification. If you need a relatively pure product, but also need a higher yield, you should consider HPLC.

Modified oligos: The urea used in PAGE pu­rification can damage certain modifications including many fluorophores and some modifications used for attachment. PAGE purification should be avoided for modifi­cations including: any fluorophore, amino modifiers, digoxigenin, I-linker, or thiol modifiers. HPLC is the purification method of choice for these modifications.

Let us help you with the decision

Still unsure or want an expert opinion? Call or email us. The scientists at IDT are happy to help you choose the appropriate purification method for your specific sequence. Contact us at applicationsupport@idtdna.com.

Product focus—Oligonucleotides and primers, dsDNA fragments

Custom Oligonucleotides and primers

You can order up to 1 µmol desalted, custom synthesized DNA oligonucleotides and they will be shipped to you the next business day (larger scales are shipped within 5 business days, pending final quality control). You can also specify whether to receive them dried down or hydrated, and whether you want them already annealed. Every IDT oligonucleotide you order is deprotected and desalted to remove small molecule impurities. Your oligos are quantified twice by UV spectrophotometry to provide an accurate measure of yield. Standard oligos are also assessed by mass spectrometry for quality you can count on.

Learn more or order now.

Custom dsDNA Fragments

Rather than annealing oligonucleotides to obtain dsDNA fragments, when your fragment size is 125 bp or longer, it might make more sense to order gBlocks® Gene Fragments. gBlocks Gene Fragments are double-stranded, sequence-verified, DNA genomic blocks, 125–3000 bp in length, that can be shipped in 2–5 working days for affordable and easy gene construction or modification. These dsDNA fragments have been used in a wide range of applications including CRISPR-mediated genome editing, antibody research, codon optimization, mutagenesis, and aptamer expression. They can also be used for generating qPCR standards.

Learn more about gBlocks Gene Fragments at www.idtdna.com/gblocks.

Additional reading

Oligo synthesis: Why IDT leads the oligo industry—Read about the phosphoramidite method of oligonucleotide synthesis that IDT uses in its manufacturing processes. We also highlight the additional measures we take to ensure our customers receive the highest quality oligos and nucleic acid products in the shortest time possible.

Oligo Quantification—Getting it Right—Why a supplier's yield readings can differ from what the researcher calculates after resuspension, and the importance of using the [right] molar extinction coefficient in calculations of oligonucleotide concentration.

Getting Enough Full-Length Oligo?—The coupling efficiency achieved by an oligonucleotide manufacturer has a direct effect on the quality of the oligonucleotides produced. Find out why coupling efficiency should be important to you.

Author: Ellen Prediger, PhD, is Director of Scientific Communication at IDT.

© 2013, 2016, 2017 Integrated DNA Technologies. All rights reserved. Trademarks contained herein are the property of Integrated DNA Technologies, Inc. or their respective owners. For specific trademark and licensing information, see www.idtdna.com/trademarks.

IDT web tools for oligo properties

Free, online tools for oligo design, secondary structure, dilution, and resuspension.

Try them now ≫

Related Articles

DNA Oligonucleotide Resuspension and Storage

Guidelines and recommendations for how to resuspend and store newly synthesized oligonucleotides.

Read more ≫

Calculation Tips for Resuspending and Diluting Nucleic Acids

Easy guidelines for making a 100 µM solution; calculating nmoles, µg, copy number, and concentration; and determining concentration equivalencies.

Read more ≫

Understanding Melting Temperature

Advice on considerations for better oligo design: oligo concentration, salt, and SNPs.

Read more ≫

Oligonucleotide Modifications: Choosing the Right Mod for Your Needs

Guidelines on selecting specific oligonucleotide modifications and how they can help you in your research.

Read more ≫

Which Biotin Modification to Use?

Applications of each of the different biotins available from IDT.

Read more ≫