Synthetic Biology
Support and Educational Content

A high throughput, high resolution melting protocol for identifying single-nucleotide polymorphisms

Bruzzone CM, Tawadros PS, et al. (2013) Enhanced Primer Selection and Synthetic Amplicon Templates Optimize High-Resolution Melting Analysis of Sin­gle-Nucleotide Polymorphisms in a Large Population. Genet Test Mol Biomarkers, Epub ahead of print.

Single nucleotide polymorphisms (SNPs) are commonly studied for their contribution to genetic variation and disease. In this article, Bruzzone et al. present a novel method for evaluating SNPs in a fast, high-throughput protocol. The protocol relies on careful primer design, and a “cloning fragment length double-stranded DNA control template” to verify the identity of homozygous peaks in the melt-curve analysis for SNP detection. Sequence-verified gBlocks® Gene Fragments were an ideal solution for the melt-curve controls in this study, and were central to the SNP analysis.

For more information or to order gBlocks Gene Fragments, go to

Product focus—Custom dsDNA, oligos and primers, design tools

Custom dsDNA Fragments

gBlocks® Gene Fragments are double-stranded, sequence-verified, DNA genomic blocks, 125–2000 bp in length, that can be shipped in 2–5 working days for affordable and easy gene construction or modification. These dsDNA fragments have been used in a wide range of applications including CRISPR-mediated genome editing, antibody research, codon optimization, mutagenesis, and aptamer expression. They can also be used for generating qPCR standards.

Learn more about gBlocks Gene Fragments at

Custom Oligonucleotides and Primers

You can order up to 1 µmol desalted, custom synthesized DNA oligonucleotides/primers and they will be shipped to you the next business day (larger scales are shipped within 5 business days). You can also specify whether to receive them dried down or hydrated, and whether you want them already annealed. Every IDT oligonucleotide you order is deprotected and desalted to remove small molecule impurities. Your oligos are quantified twice by UV spectrophotometry to provide an accurate measure of yield. Standard oligos are also assessed by mass spectrometry for quality you can count on.

Learn more or order now.

Free online tools for oligonucleotide analysis and primer design

Explore IDT free, online software for oligonucleotide analysis and for qPCR probe and assay design. The design engines for these tools use sophisticated algorithms that take into account factors such as nearest-neighbor analysis and buffer conditions to calculate Tm.

Additional reading

The gene construction revolution—See how use of high-quality, custom dsDNA fragments as a starting material allows you to turn what might otherwise be multi-step cloning assemblies into simpler reactions. You can often just order the entire target sequence as a gBlocks Gene Fragment, ready for cloning or other uses.

Czech Republic iGEM team’s diagnostic for circulating tumor cells—Research profile: Read how students participating on the Czech Republic’s first iGEM team reprogram yeast cells to identify circulating tumor cells. Their project, the IOD Band, could become a general diagnostic test for early detection and mapping of tumor cell mobility. IDT gBlocks® Gene Fragments facilitated rapid, construct assembly of IOD Band receptor molecules.

IDT has improved the efficiency of CRISPR-Cas9 genome editing—Webinar summary: Learn how research conducted at IDT led to the development of a potent new set of CRISPR-Cas9 genome editing tools.

Author: Hans Packer, PhD, is a scientific writer at IDT.

© 2016 Integrated DNA Technologies. All rights reserved. Trademarks contained herein are the property of Integrated DNA Technologies, Inc. or their respective owners. For specific trademark and licensing information, see

gBlocks® Gene Fragments

Double-stranded DNA up to 3,000 kb—great for easy gene construction, CRISPR genome editing, and more.

Learn how ≫

Related Articles

CRISPR and Cas9 for Flexible Genome Editing

Applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) for targeted gene editing or removal of sequences.

Read more ≫

Cloning Strategies Part 3: Blunt-End Cloning

Tips and tricks for blunt-end cloning.

Read more ≫

Building Biological Factories for Renewable and Sustainable Products

Amyris uses genetic engineering and screening technologies to design microorganisms that convert plant-sourced sugars into target molecules, including pharmaceuticals, biofuels, polymers, flavors, and fragrances.

Read more ≫

iGEM Students Engineer Biological Tools for a Better World

iGEM teams show how non-standard natural and synthetic amino acids can be used in 1) peptide synthesis, and 2) disease monitoring and treatment. Both projects make use of gBlocks® Gene Fragments to speed construct assembly.

Read more ≫

Creating a Synthetic Immune System for Optimized Immune Profiling

A high-throughput method for sequencing and quantification of rearranged antigen receptors on T- and B-cells using gBlocks Gene Fragments to create a “gold standard synthetic immune system.”

Read more ≫